Search for


TEXT SIZE

search for



CrossRef (0)
Current Status of Estimated Glomerular Filtration Rate Reporting in Korea
J Lab Med Qual Assur 2019;41:201-206
Published online December 31, 2019
© 2019 Korean Association of External Quality Assessment Service.

Soo-Kyung Kim1, Tae-Dong Jeong1, Sholhui Park1, Young-Wha Lee2, and Won-Ki Min3

1Department of Laboratory Medicine, Ewha Womans University College of Medicine, Seoul; 2 Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon; 3 Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
Correspondence to: Tae-Dong Jeong
Department of Laboratory Medicine, Ewha Womans University College of Medicine, 260 Gonghang-daero, Gangseogu, Seoul 07804, Korea
Tel: +82-2-6986-3386 Fax: +82-2-6986-3389 E-mail: tdjeong@ewha.ac.kr
Received October 15, 2019; Revised November 6, 2019; Accepted November 12, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Abstract

Background:

We aimed to investigate the current status of estimated glomerular filtration rate (eGFR) reporting in clinical laboratories for the first time in Korea.

Methods:

The eGFR proficiency testing data obtained by the Korean Association of External Quality Assessment Service (KEQAS) from 2017 to 2018 as a pilot project were used. We investigated the proportion of clinical laboratories reporting eGFR who were participants in the KEQAS general chemistry proficiency testing program. The types of equations for calculating the eGFR in adults and children were assessed. We evaluated whether each participant laboratory calculated the eGFR correctly.

Results:

About 18% and 12% of laboratories were reporting the eGFR with serum creatinine concentrations for adults and children, respectively. The most common equation for calculating the eGFR in adults was the Modification of Diet in Renal Disease (MDRD) 4 variable (isotope dilution mass spectrometry [IDMS]-traceable), followed by the MDRD 4 variable (non-IDMS-traceable) and Chronic Kidney Disease-Epidemiology Collaboration equation. In children, 9% used the original Schwartz, 4% used the updated Schwartz, and the other laboratories used the same equation as adults. Accurate eGFR was calculated in 76.0%–96.2% of adults and 65.3%–75.0% of children.

Conclusions:

Continuous education is needed to report eGFR in clinical laboratories that measure serum creatinine levels. Clinical laboratories need to report the eGFR in accordance with internationally recommended guidelines.

Keywords : Creatinine, Glomerular filtration rate, Laboratory proficiency testing
꽌 濡

쟾諛섏쟻씤 떊湲곕뒫 룊媛뿉 궗슜븯뒗 몴쟻 吏몴뒗 궗援ъ껜뿬 怨쇱쑉(glomerular filtration rate)씠떎[1]. 궗援ъ껜뿬怨쇱쑉쓣 痢≪젙븯뒗 몴以諛⑸쾿 쇅씤꽦 몴吏옄씤 씠닃由곗쓣 泥대궡濡 二쇱엯븳 썑 냼蹂 씠닃由 泥냼쑉쓣 痢≪젙븯뒗 寃껋씠떎[2].

븯吏留 씠 諛⑸쾿 엫긽寃궗떎뿉꽌 씪긽쟻씤 寃궗濡 떆뻾븷 닔 뾾湲 븣臾몄뿉 삁泥 겕젅븘떚땶 냽룄濡 怨꾩궛븳 異붿젙궗援ъ껜뿬怨쇱쑉(estimated glomerular filtration rate)쓣 떊 궗슜븳떎[2]. 엫긽寃궗떎뿉꽌 닔뻾븯뒗 紐⑤뱺 寃궗뒗 쟻젅븳 諛⑸쾿쑝濡 쇅遺젙룄愿由щ 떆뻾븷 븘슂媛 엳떎[3]. 異붿젙궗援ъ껜뿬怨쇱쑉쓽 寃쎌슦 援젣쟻쑝濡 沅뚯옣릺뒗 怨꾩궛怨듭떇쓣 궗슜븯뒗吏, 蹂닿퀬떒쐞 諛 寃곌낵蹂닿퀬뒗 沅뚯옣릺뒗 諛⑹떇쓣 궗슜븯뒗吏, 洹몃━怨 젙솗븳 異붿젙궗援ъ껜뿬怨쇱쑉쓣 怨꾩궛븯뿬 蹂닿퀬븯뒗吏 벑 寃궗 愿젴맂 쟾諛섏쟻씤 吏 愿由ш 븘슂븯떎. 븳엫긽寃궗젙룄愿由ы삊쉶뿉꽌 2017뀈 3쉶李 씪諛섑솕븰寃궗봽濡쒓렇옩遺꽣 2018뀈 4쉶李 씪諛 솕븰寃궗봽濡쒓렇옩源뚯 異붿젙궗援ъ껜뿬怨쇱쑉 빆紐⑹쓣 떆踰붿궗뾽쑝濡 룊媛븯떎. 씠쟾 뿰援ъ뿉꽌 援쇅 異붿젙궗援ъ껜뿬怨쇱쑉 쁽솴뿉 븳 蹂닿퀬媛 엳뿀吏留[4,5], 븘吏곴퉴吏 援궡 엫긽寃궗떎쓽 異붿젙 궗援ъ껜뿬怨쇱쑉 蹂닿퀬 뿬遺 諛 怨꾩궛怨듭떇 醫낅쪟 벑뿉 븳 뿰援ш 뾾뿀떎.

蹂 뿰援ъ뿉꽌 븳엫긽寃궗젙룄愿由ы삊쉶쓽 異붿젙궗援ъ껜뿬怨쇱쑉 떊鍮숇룄議곗궗 옄猷뚮 湲곕컲쑝濡 援궡 엫긽寃궗떎쓽 異붿젙궗援 泥댁뿬怨쇱쑉 蹂닿퀬쁽솴쓣 뙆븙븯怨좎옄 븯떎.

옱猷 諛 諛⑸쾿

1. 異붿젙궗援ъ껜뿬怨쇱쑉 떊鍮숇룄議곗궗 옄猷

援궡 엫긽寃궗떎쓽 異붿젙궗援ъ껜뿬怨쇱쑉 蹂닿퀬쁽솴쓣 뙆븙븯湲 쐞빐 2017뀈遺꽣 2018뀈源뚯 븳엫긽寃궗젙룄愿由ы삊쉶뿉꽌 떆뻾븳 씪諛섑솕븰寃궗 떊鍮숇룄議곗궗 썝떆옄猷뚮 궗슜븯떎. 2017뀈 3쉶李⑤꽣 2018뀈 4쉶李④퉴吏 珥 6쉶李⑥쓽 씪諛섑솕븰寃궗봽濡쒓렇옩 궡뿉 異붿젙궗援ъ껜뿬怨쇱쑉 떆踰붿궗뾽씠 떆뻾릺뿀怨, 留 쉶李 3媛 寃泥대 궗슜븯떎. 씪諛섑솕븰寃궗봽濡쒓렇옩뿉 李몄뿬븯뒗 媛 湲곌뿉꽌 異붿젙궗援ъ껜뿬怨쇱쑉 蹂닿퀬 뿬遺瑜 꽑깮븯怨, 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛쓣 쐞빐 봽濡쒓렇옩 븞궡臾몄뿉 젣怨듬릺뒗 젙蹂(媛 寃泥대퀎 굹씠, 꽦蹂, 씤醫 벑 옄猷) 媛 李몄뿬湲곌뿉꽌 痢≪젙븳 겕젅븘떚땶 냽룄 媛믪쑝濡 異붿젙궗援ъ껜뿬怨쇱쑉쓣 怨꾩궛븯룄濡 븯떎. 媛 李몄뿬湲곌뿉꽌 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛 怨듭떇쓣 꽑깮븷 닔 엳룄濡 봽濡쒓렇옩 븞궡臾몄뿉 Modification of Diet in Renal Disease (MDRD) 4 variable (isotope dilution mass spectrometry [IDMS]-traceable) [6], MDRD 4 variable (non IDMS-traceable) [7], MDRD 6 variable [8], Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) [9], Cockcroft-Gault [10], Schwartz [11], updated Bedside Schwartz [9], 1B [9] 怨듭떇 醫낅쪟瑜 젣怨듯븯떎(Supplementary Table 1).

Table 1 . Response rate of laboratories examining the eGFR for the general chemistry proficiency testing of the Korea Association of Quality Assurance for Clinical Laboratories.

Sample nameTrial/yearNo. of laboratories responding to general chemistry proficiency testingeGFR reporting (%)

creati­nineeGFR
Adult
 CC-17-083rd/20171,52428018.4
 CC-17-104th/20171,50427018.0
 CC-18-021st/20181,52027918.4
 CC-18-052nd/20181,59528718.0
 CC-18-073rd/20181,64029518.0
 CC-18-104th/20181,62829318.0
Children
 CC-17-073rd/20171,52418111.9
 CC-18-011st/20181,52018011.8
 CC-18-062nd/20181,59518411.5
 CC-18-083rd/20181,64018911.5
 CC-18-114th/20181,62819311.9

Abbreviation: eGFR, estimated glomerular filtration rate..


2. 옄猷 遺꾩꽍

븳엫긽寃궗젙룄愿由ы삊쉶 씪諛섑솕븰寃궗봽濡쒓렇옩뿉 룷븿맂 겕젅븘떚땶寃궗 寃곌낵 쉶떊湲곌 以 異붿젙궗援ъ껜뿬怨쇱쑉 寃곌낵瑜 븿猿 쉶떊븳 湲곌쓣 異붿젙궗援ъ껜뿬怨쇱쑉 蹂닿퀬湲곌쑝濡 젙쓽븯떎. 씪諛섑솕븰寃궗봽濡쒓렇옩 븞궡臾몄뿉 젣怨듬맂 굹씠 議곌굔뿉 뵲瑜 꽦씤 諛 냼븘쓽 異붿젙궗援ъ껜뿬怨쇱쑉 蹂닿퀬 뿬遺 媛 李몄뿬湲곌뿉꽌 궗슜븯뒗 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨듭떇 醫낅쪟瑜 議곗궗븯떎. 삉븳 媛 湲곌뿉꽌 궗슜븯뒗 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨듭떇쑝濡 젙솗븯寃 異붿젙궗援ъ껜뿬怨쇱쑉쓣 怨꾩궛뻽뒗吏 룊媛븯떎. 湲곌뿉꽌 쉶떊븳 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛寃곌낵媛 紐⑺몴媛믪쓽 ±1 mL/min/1.73 m2 씠궡씤 寃쎌슦 異붿젙궗援ъ껜뿬怨쇱쑉쓣 젙솗븯寃 怨꾩궛뻽떎怨 뙋떒븯떎. 異붿젙궗援ъ껜뿬怨쇱쑉 紐⑺몴媛믪 媛 湲곌뿉꽌 꽑깮븳 怨꾩궛怨듭떇 醫낅쪟, 겕젅븘떚땶 痢≪젙媛 洹몃━怨 異붿젙궗 援ъ껜뿬怨쇱쑉 怨꾩궛쓣 쐞빐 二쇱뼱吏 젙蹂대 궗슜븯뿬 뿰援ъ옄뱾씠 怨꾩궛븳 媛믪쑝濡 젙쓽븯떎. 怨꾩궛怨쇱젙쓽 삤瑜섎 諛⑹븯湲 쐞빐 뿰援ъ옄 2씤씠 룆由쎌쟻쑝濡 異붿젙궗援ъ껜뿬怨쇱쑉쓣 怨꾩궛븯뿬 씪移 뿬遺瑜 솗씤븯떎.

寃 怨

븳엫긽寃궗젙룄愿由ы삊쉶쓽 씪諛섑솕븰寃궗봽濡쒓렇옩 떊鍮 룄議곗궗뿉 李몄뿬븯뒗 삁泥 겕젅븘떚땶 냽룄 寃궗湲곌 以 異붿젙궗 援ъ껜뿬怨쇱쑉쓣 怨꾩궛븯뿬 겕젅븘떚땶 냽룄 븿猿 蹂닿퀬븯뒗 湲 愿 鍮꾩쑉씠 꽦씤쓽 寃쎌슦 빟 18%怨, 냼븘뒗 빟 12%떎. 씪 諛섑솕븰寃궗봽濡쒓렇옩 떊鍮숇룄議곗궗 쉶李⑤퀎 異붿젙궗援ъ껜뿬怨쇱쑉 蹂 怨좎쑉 Table 1뿉 湲곗닠븯떎.

꽦씤뿉꽌 궗슜븯뒗 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨듭떇 鍮덈룄뒗 MDRD 4 variable (IDMS-traceable), MDRD 4 variable (non IDMS-traceable), CKD-EPI 닚꽌떎(Fig. 1). 냼븘뿉꽌 궗슜븯뒗 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨듭떇 鍮덈룄뒗 MDRD 4 variable (IDMS-traceable), MDRD 4 variable (non IDMS-traceable), CKD-EPI, Schwartz, updated Schwartz 닚꽌떎(Fig. 2). 李몄뿬湲곌뿉꽌 꽦씤 異붿젙궗援ъ껜뿬怨쇱쑉쓣 젙솗븯寃 怨꾩궛븳 寃쎌슦뒗 寃泥댁뿉 뵲씪 76.0% (CC-18-04 寃泥)遺꽣 96.2% (CC-18-10 寃泥)源뚯 遺꾪룷븯떎(Fig. 3A). 냼븘쓽 寃쎌슦 65.3% (CC-18-12 寃泥)遺꽣 75.0% (CC-18-06 寃泥)떎(Fig. 3B).

Figure 1.

Equations used to calculate estimated glomerular filtration rate in adults. Abbreviations: MDRD, Modification of Diet in Renal Disease; IDMS, isotope dilution mass spectrometry; CKD-EPI, chronic kidney disease epidemiology collaboration.


Figure 2.

Equations used to calculate estimated glomerular filtration rate in children. Abbreviations: MDRD, Modification of Diet in Renal Disease; IDMS, isotope dilution mass spectrometry; CKD-EPI, chronic kidney disease epidemiology collaboration.


Figure 3.

Accurate calculation of eGFR for adults (A) and children (B). Accurate eGFR calculation was defined within the target eGFR±1 mL/min/1.73 m2. Abbreviation: eGFR, estimated glomerular filtration rate.


怨 李

蹂 뿰援щ뒗 援궡 엫긽寃궗떎쓽 異붿젙궗援ъ껜뿬怨쇱쑉 寃궗쁽솴쓣 泥섏쓬쑝濡 蹂닿퀬븳 뜲 쓽쓽媛 엳떎. 븳엫긽寃궗젙룄愿由 삊쉶 씪諛섑솕븰寃궗봽濡쒓렇옩쓽 겕젅븘떚땶 寃궗 李몄뿬湲곌 鍮 異붿젙궗援ъ껜뿬怨쇱쑉(꽦씤) 떆踰붿궗뾽뿉 쉶떊븳 湲곌 빟 18%떎. 誘멸뎅 College of American Pathologists (CAP)뿉꽌 二쇨븯뒗 씪諛섑솕븰寃궗 쇅遺젙룄愿由(general chemistry proficiency testing survey)뿉 李몄뿬븯뒗 빟 5,000뿬 媛 寃궗떎 以 꽦씤쓽 異붿젙궗援ъ껜뿬怨쇱쑉쓣 蹂닿퀬븯뒗 湲곌씠 2003뀈 3% 뿉꽌 2005뀈 20%, 2008뀈 70%, 洹몃━怨 2013뀈뿉뒗 90%源뚯 젏李 利앷븯떎[5]. 2011뀈 쁺援 옄猷뚯뿉 쓽븯硫, National Health Service 寃궗떎 109媛 以 빟 43媛(49%) 寃궗떎뿉꽌 꽦씤쓽 異붿젙궗援ъ껜뿬怨쇱쑉쓣 蹂닿퀬븯떎[4]. 援쇅 옄猷뚯 鍮꾧탳븯硫 援궡 엫긽寃궗떎쓽 꽦씤 異붿젙궗援ъ껜뿬怨쇱쑉 蹂닿퀬쑉씠 긽쟻쑝濡 留ㅼ슦 궙븯떎. 蹂 뿰援ъ뿉꽌 異붿젙궗援ъ껜뿬怨쇱쑉 떊鍮숇룄 議곗궗 떆踰붿궗뾽뿉 寃곌낵瑜 쉶떊븳 湲곌쓣 異붿젙궗援ъ껜뿬怨쇱쑉 蹂닿퀬湲곌쑝濡 젙쓽븯湲 븣臾몄뿉 異붿젙궗援ъ껜뿬怨쇱쑉 蹂닿퀬쑉씠 怨쇱냼룊媛릺뿀쓣 媛뒫꽦씠 엳吏留, 씠瑜 怨좊젮븳떎怨 븯뜑씪룄 援궡 엫긽寃궗떎쓽 異붿젙궗援ъ껜뿬怨쇱쑉 蹂닿퀬쑉씠 궙떎怨 뙋떒 맂떎. 삁泥 겕젅븘떚땶 냽룄뒗 겕젅븘떚땶 씠쇅쓽 떎뼇븳 슂씤(삁: 꽦蹂, 굹씠, 씤醫, 洹쇱쑁웾 벑)뿉 쓽빐 쁺뼢쓣 諛쏄린 븣臾몄뿉 떊湲곕뒫쓣 젙솗븯寃 룊媛븯뒗 뜲 젣븳젏씠 엳떎[1]. 뵲씪꽌 2012 Kidney Disease Improving Global Outcomes (KDIGO) 吏移⑥뿉꽌 삁泥 겕젅븘떚땶쓣 痢≪젙븯뒗 寃궗떎뿉꽌 異붿젙궗援 泥댁뿬怨쇱쑉쓣 怨꾩궛븯뿬 겕젅븘떚땶 냽룄 븿猿 蹂닿퀬븷 寃껋쓣 沅뚯옣븯怨 엳떎[9]. 援궡 엫긽寃궗떎뿉꽌룄 援젣 吏移⑥뿉 뵲씪 異붿젙궗援ъ껜뿬怨쇱쑉쓣 怨꾩궛븯뿬 겕젅븘떚땶 냽룄 븿猿 蹂닿퀬븷 븘슂媛 엳떎.

諛섎㈃, 냼븘쓽 寃쎌슦 援궡 寃궗떎 빟 12% 媛웾뿉꽌 異붿젙궗 援ъ껜뿬怨쇱쑉쓣 蹂닿퀬븯怨 엳뿀怨, 씠뒗 2017 CAP 議곗궗옄猷뚯씤 9% 쑀궗븯떎[5]. 냼븘쓽 寃쎌슦 Schwartz 삉뒗 updated Schwartz 怨듭떇쑝濡 異붿젙궗援ъ껜뿬怨쇱쑉쓣 蹂닿퀬븯湲 쐞빐 궎 (height) 젙蹂닿 븘슂븳뜲, 寃궗젙蹂댁떆뒪뀥쓣 넻빐 궎 젙蹂대 뼸뒗 寃껋씠 젣븳쟻씤 寃쎌슦媛 留롮븘 꽦씤쓽 異붿젙궗援ъ껜뿬怨쇱쑉 蹂닿퀬쑉蹂대떎 궙 寃껋쑝濡 뙋떒맂떎. 理쒓렐 궎 젙蹂닿 븘슂 뾾뒗 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨듭떇씠 냼媛쒕릺뼱 異뷀썑蹂대떎 슚쑉쟻쑝濡 냼븘쓽 異붿젙궗援ъ껜뿬怨쇱쑉쓣 蹂닿퀬븷 닔 엳쓣 寃껋쑝濡 깮媛곷맂떎 [12,13].

2012뀈 KDIGO 吏移⑥뿉꽌 沅뚯옣븯뒗 꽦씤쓽 異붿젙궗援ъ껜 뿬怨쇱쑉 怨꾩궛怨듭떇 CKD-EPI 怨듭떇씠硫, 냼븘뒗 updated Schwartz 諛 1B 怨듭떇씠떎[9]. 蹂 뿰援ъ뿉꽌 꽦씤 異붿젙궗援ъ껜 뿬怨쇱쑉쓣 蹂닿퀬븯뒗 援궡 엫긽寃궗떎쓽 빟 18%뿉꽌 CKD-EPI 怨듭떇쓣 궗슜븯怨 엳뿀怨, 빟 70% 媛웾쓽 寃궗떎뿉꽌뒗 뿬윭 삎깭쓽 MDRD 怨듭떇쓣 궗슜븯怨 엳뿀떎. 씠뒗 2017뀈 CAP 옄猷(CKD-EPI 25%, MDRD 71%) 쑀궗븯떎[5]. 냼븘쓽 寃쎌슦 援궡 엫긽寃궗떎쓽 빟 4%뒗 updated Schwartz 怨듭떇, 빟 9%뒗 Schwartz 怨듭떇쓣 궗슜븯怨, 씠쇅 寃궗떎 꽦씤뿉꽌 궗슜븯뒗 怨듭떇쓣 냼븘뿉꽌 룞씪븯寃 궗슜븯떎. 援쇅 옄 猷뚯뿉꽌뒗 updated Schwartz 怨듭떇 궗슜씠 35%, Schwartz 怨듭떇 궗슜 30%怨, 꽦씤쓽 異붿젙궗援ъ껜뿬怨쇱쑉 怨듭떇쓣 궗슜븯뒗 湲곌 24%떎[5]. 꽦씤쓽 異붿젙궗援ъ껜뿬怨쇱쑉 沅뚯옣 怨듭떇씠 MDRD뿉꽌 CKD-EPI 怨듭떇쑝濡 蹂寃쎈릺뿀怨, 냼븘쓽 寃쎌슦 Schwartz뿉꽌 updated Schwartz 삉뒗 1B 怨듭떇쑝濡 蹂寃쎈맂 寃껋쿂읆 沅뚯옣릺뒗 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨듭떇씠 蹂븷 닔 엳쑝誘濡 媛 엫긽寃궗떎뿉꽌뒗 怨듭떊젰 엳뒗 湲곌 삉뒗 떒泥댁뿉꽌 젣븞븳 理쒖떊 吏移⑥쓣 뵲瑜대뒗 寃껋씠 沅뚯옣맂떎.

MDRD 怨듭떇쓽 寃쎌슦 蹂댁젙臾쇱쭏(calibrator)쓽 痢≪젙냼湲됱꽦 (traceability) 뿬遺뿉 뵲씪 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨듭떇씠 떎瑜대떎[6,7]. 援젣쟻씤 겕젅븘떚땶 寃궗 몴以솕쓽 씪솚쑝濡 理쒓렐 援궡 엫긽寃궗떎뿉 蹂닿툒릺뒗 蹂댁젙臾쇱쭏(삁, IDMS-traceable calibrator)쓽 듅꽦쓣 怨좊젮븯硫 MDRD 4 variable (non IDMS-traceable) 怨듭떇쑝濡 異붿젙궗援ъ껜뿬怨쇱쑉쓣 怨꾩궛븳떎怨 쓳떟븳 湲곌 寃궗떎뿉꽌 궗슜븯뒗 겕젅븘떚땶 寃궗쓽 蹂댁젙 臾쇱쭏쓣 솗씤빐蹂 븘슂媛 엳떎. 痢≪젙냼湲됱꽦씠 솗蹂대릺吏 븡 蹂댁젙臾쇱쭏쓣 궗슜븯뒗 湲곌 蹂댁젙臾쇱쭏쓣 援먯껜빐빞 븯硫, 痢≪젙냼 湲됱꽦씠 엳뒗 蹂댁젙臾쇱쭏쓣 궗슜븯硫댁꽌 MDRD 4 variable (non IDMS-traceable) 怨꾩궛怨듭떇쓣 궗슜븯뒗 湲곌 궗슜븯뒗 異붿젙 궗援ъ껜뿬怨쇱쑉 怨꾩궛怨듭떇 蹂寃쎌씠 沅뚯옣맂떎.

옄뱾 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨쇱젙쓽 삤瑜 뿬遺瑜 젏寃븯湲 쐞빐 媛 李몄뿬湲곌뿉꽌 궗슜븯뒗 怨듭떇쑝濡 異붿젙궗援ъ껜뿬 怨쇱쑉쓣 젙솗븯寃 怨꾩궛뻽뒗吏 룊媛븯떎. 蹂 뿰援ъ뿉꽌 媛 李몄뿬 湲곌쓽 겕젅븘떚땶 痢≪젙媛 젙솗룄뒗 룊媛븯吏 븡븯怨, 떒吏 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨쇱젙뿉꽌 삤瑜섍 엳뿀뒗吏 뿬遺瑜 룊媛븯떎. 옄뱾 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨쇱젙뿉꽌 냼닔젏 옄由 닔 泥섎━諛⑹떇怨 怨꾩궛諛⑸쾿 벑쓽 李⑥씠濡 씤빐 紐⑺몴媛믪뿉꽌 ±1 mL/min/1.73 m2 媛웾쓽 李⑥씠瑜 蹂댁씪 닔 엳湲 븣臾몄뿉 씠瑜 怨좊젮븯뿬 怨꾩궛 젙솗룄瑜 룊媛븯떎[14,15]. 꽦씤쓽 寃쎌슦 寃泥댁뿉 뵲씪 76.0%뿉꽌 96.2%쓽 寃궗떎뿉꽌 젙솗븯寃 異붿젙궗援 泥댁뿬怨쇱쑉쓣 怨꾩궛븯怨, 냼븘뿉꽌뒗 65.3%뿉꽌 75.0%쓽 寃궗떎뿉꽌 異붿젙궗援ъ껜뿬怨쇱쑉쓣 젙솗븯寃 怨꾩궛븯떎. 씠濡좎쟻쑝濡 媛 寃궗떎뿉꽌 쟾궛솕맂 諛⑸쾿쑝濡 異붿젙궗援ъ껜뿬怨쇱쑉쓣 怨꾩궛븯뿬 蹂닿퀬븯怨 엳떎硫 二쇱뼱吏 議곌굔쑝濡 怨꾩궛븳 媛믪씠 젙솗빐빞 븳떎. 븯吏留 異붿젙궗援ъ껜뿬怨쇱쑉 떆踰붿궗뾽 옄猷뚯뿉꽌 媛 湲곌씠 쉶떊븳 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛媛믪씠 옄뱾씠 怨꾩궛븳 寃곌낵 李⑥씠媛 엳뒗 寃쎌슦媛 엳뿀떎. 씠윭븳 씠쑀뒗 媛 湲곌뿉꽌 쉶떊븳 異붿젙궗援ъ껜뿬怨쇱쑉 怨꾩궛怨듭떇 醫낅쪟媛 寃궗옣鍮 씤꽣럹씠뒪 삉뒗 寃궗젙蹂댁떆뒪뀥뿉 쟻슜맂 怨듭떇怨 떖옄嫄곕굹, 씤꽣럹씠뒪 삉뒗 寃궗젙蹂댁떆뒪뀥뿉 쟻슜맂 怨꾩궛怨듭떇뿉 삤瑜섍 엳嫄곕굹, 삉뒗 異붿젙궗援ъ껜뿬怨쇱쑉 떆踰붿궗뾽쓣 쐞빐 닔옉뾽쑝濡 異붿젙궗援ъ껜뿬怨쇱쑉쓣 怨꾩궛븯뒗 怨쇱젙뿉꽌 궗臾댁쟻삤李④ 諛쒖깮뻽쓣 媛뒫꽦 벑 留ㅼ슦 떎뼇븳 썝씤쓣 깮媛곹빐蹂 닔 엳뿀떎.

寃곕줎쟻쑝濡, 蹂 뿰援ъ뿉꽌 異붿젙궗援ъ껜뿬怨쇱쑉 쇅遺젙룄愿由 떆踰붿궗뾽 옄猷 넻빐 援궡뿉꽌 泥섏쓬쑝濡 엫긽寃궗떎쓽 異붿젙궗援ъ껜뿬怨쇱쑉 蹂닿퀬쁽솴쓣 뙆븙븷 닔 엳뿀떎. 삁泥 겕젅븘떚땶 寃궗瑜 떆뻾븯뒗 湲곌뿉꽌 援젣쟻쑝濡 沅뚯옣릺뒗 怨듭떇쓣 궗슜븯뿬 異붿젙궗援ъ껜뿬怨쇱쑉쓣 蹂닿퀬븷 닔 엳룄濡 吏냽쟻씤 援먯쑁 諛 솉蹂닿 븘슂븯떎. 異붿젙궗援ъ껜뿬怨쇱쑉쓣 蹂닿퀬븯뒗 湲곌뿉꽌뒗 二쇱뼱吏 젙蹂대줈 젙솗븳 異붿젙궗援ъ껜뿬怨쇱쑉 媛믪씠 怨꾩궛릺뒗吏 吏냽쟻쑝濡 젏寃븷 븘슂媛 엳떎. 異붿젙궗援ъ껜뿬怨쇱쑉 떊湲곕뒫쓣 룊媛븯뒗 以묒슂븳 엫긽쟻 吏몴濡 솢슜릺誘濡 삁泥 겕젅븘떚땶쓣 痢≪젙븯뒗 寃궗떎뿉꽌 寃궗젙蹂댁떆뒪뀥쓣 넻빐 異붿젙궗援ъ껜뿬怨쇱쑉쓣 蹂닿퀬븯뒗 寃껋씠 寃궗쓽 媛移섎 뜑슧 뜑 넂씠뒗 諛⑸쾿씠씪怨 깮媛곷맂떎.

媛먯궗쓽 湲

씠 뿰援щ뒗 븳엫긽寃궗젙룄愿由ы삊쉶쓽 2019뀈룄 븰닠뿰援 怨쇱젣 뿰援щ퉬 吏썝쑝濡 닔뻾릺뿀떎(怨쇱젣踰덊샇: 2019-7).

SUPPLEMENTARY MATERIALS
References
  1. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function:measured and estimated glomerular filtration rate. N Engl J Med 2006;354:2473-83.
    Pubmed CrossRef
  2. Lamb EJ, Jones GR. Kidney function tests. In: Rifai N, Horvath AR, Wittwer CT, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 6th ed. St. Louis (MO): Elsevier Saunders:479-517.
  3. Miller WG, Jones GR, Horowitz GL, Weykamp C. Proficiency testing/external quality assessment:current challenges and future directions. Clin Chem 2011;57:1670-80.
    Pubmed CrossRef
  4. Kilpatrick ES, Verrill H, National Clinical Biochemistry Audit Group. A national audit of estimated glomerular filtration rate and proteinuria reporting in the UK. Ann Clin Biochem; 2011 p. 558-61.
    Pubmed CrossRef
  5. Miller WG, Jones GRD. Estimated glomerular filtration rate;laboratory implementation and current global status. Adv Chronic Kidney Dis 2018;25:7-13.
    Pubmed CrossRef
  6. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006;145:247-54.
    Pubmed CrossRef
  7. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, et al. National Kidney Foundation practice guidelines for chronic kidney disease:evaluation, classification, and stratification. Ann Intern Med 2003;139:137-47.
    Pubmed CrossRef
  8. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine:a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461-70.
    Pubmed CrossRef
  9. Stevens PE, Levin A, Kidney Disease:Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease:synopsis of the kidney disease:improving global outcomes 2012 clinical practice guideline. Ann Intern Med 2013;158:825-30.
    Pubmed CrossRef
  10. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31-41.
    Pubmed CrossRef
  11. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976;58:259-63.
    Pubmed
  12. Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant 2016;31:798-806.
    Pubmed KoreaMed CrossRef
  13. Jeong TD, Cho EJ, Lee W, Chun S, Hong KS, Min WK. Efficient reporting of the estimated glomerular filtration rate without height in pediatric patients with cancer. Clin Chem Lab Med 2017;55:1891-7.
    Pubmed CrossRef
  14. Jeong TD. Small but non-negligible discrepancy between subgroup and single CKD-EPI equation to calculate the estimated glomerular filtration rate. Clin Chim Acta 2019;495:251-2.
    Pubmed CrossRef
  15. Park S, Jeong TD. Estimated glomerular filtration rates show minor but significant differences between the single and subgroup creatinine-based Chronic Kidney Disease Epidemiology Collaboration equations. Ann Lab Med 2019;39:205-8.
    Pubmed KoreaMed CrossRef